An outlier detection algorithm based on clustering

نویسندگان

  • Hongbo Zhou
  • Juntao Gao
چکیده

Outlier detection is a very important type of data mining, which is extensively used in application areas. The traditional cell-based outlier detection algorithm not only takes a large amount of time in processing massive data, but also uses lots of machine resources, which results in the imbalance of the machine load. This paper presents an distancebased outlier detection algorithm. These experiments show that this improved algorithm is able to effectively improve the efficiency of the outlier detection as well as the accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

A Spectral Clustering Based Outlier Detection Technique

Outlier detection shows its increasingly high practical value in many application areas such as intrusion detection, fraud detection, discovery of criminal activities in electronic commerce and so on. Many techniques have been developed for outlier detection, including distribution-based outlier detection algorithm, depth-based outlier detection algorithm, distance-based outlier detection algor...

متن کامل

Outlier Detection Using Enhanced K-means Clustering Algorithm and Weight Based Center Approach

ABSTRACT-In Data mining there are lots of methods are used to detect the outlier by making the clusters of data and then detect the outlier from them. In general Clustering method plays a very important role in data mining. Clustering means grouping the similar data objects together based on the characteristic they possess. Outlier Detection is an important issue in Data mining; particularly it...

متن کامل

An Efficient Clustering and Distance Based Approach for Outlier Detection

Outlier detection is a substantial research problem in the domain of data mining that aims to uncover objects which exhibit significantly different, exceptional and inconsistent from rest of the data. Outlier detection has been widely researched and finds use within various application domains including tax fraud detection, network robustness analysis, network intrusion and medical diagnosis. I...

متن کامل

Support Vector Clustering for Outlier Detection

In this paper a novel Support vector clustering(SVC) method for outlier detection is proposed. Outlier detection algorithms have application in several tasks such as data mining, data preprocessing, data filter-cleaner, time series analysis and so on. Traditionally outlier detection methods are mostly based on modeling data based on its statistical properties and these approaches are only prefe...

متن کامل

Outlier Detection : A Clustering - Based Approach

16 Abstract— Outlier detection is a fundamental issue in data mining; specifically it has been used to detect and remove anomalous objects from data. It is an extremely important task in a wide variety of application domains. In this paper, a proposed method based on clustering approaches for outlier detection is presented. We first perform the Partitioning Around Medoids (PAM) clustering algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015